博客
关于我
zoj 3195 Design the city LCA Tarjan
阅读量:443 次
发布时间:2019-03-06

本文共 1358 字,大约阅读时间需要 4 分钟。

题目大意:

求三点之间的最短距离

思路:

有了两点之间的最短距离求法,不难得出:

对于三个点我们两两之间求最短距离 得到 d1 d2 d3
那么最短距离就是 d = ( d1 + d2 + d3 ) / 2

  • 要注意每个数组的范围大小,因为这个问题手抖敲错,TLE+RE一整页/(ㄒoㄒ)/~~
  • 用前向星来保存边和询问,空间卡的也很严
  • 如下图所示:所求路线为紫色,等于蓝色+黄色+绿色之和的一半

代码:

#include 
using namespace std;const int maxn = 50005;const int maxm = 70005;struct node1 { int next,to,w;} e[maxn*2];struct node2 { int next,to,id;} q[maxm*6];int n,m,head1[maxn],head2[maxn],cnt1,cnt2,vis[maxn],f[maxn],res[maxm*6],dist[maxn];inline void add1(int u, int v, int w) { e[cnt1].to=v; e[cnt1].w=w; e[cnt1].next=head1[u]; head1[u]=cnt1++;}inline void add2(int u, int v, int id) { q[cnt2].to=v; q[cnt2].id=id; q[cnt2].next=head2[u]; head2[u]=cnt2++;}inline void init() { cnt1=cnt2=0; memset(head1,-1,sizeof(head1)); memset(head2,-1,sizeof(head2)); memset(vis,0,sizeof(vis));}inline int Find(int x) { return x == f[x] ? x : f[x] = Find(f[x]);}inline void tarjan(int s) { vis[s]=1; f[s]=s; int t; for(int i=head1[s]; i!=-1; i=e[i].next) { if(!vis[t=e[i].to]) { dist[t]=dist[s]+e[i].w; tarjan(t); f[t]=s; } } for(int i=head2[s]; i!=-1; i=q[i].next) if(vis[t=q[i].to]) res[q[i].id]=dist[s]+dist[t]-2*dist[Find(t)];}int main() { int cnt=0,u,v,w,x,y,z; while(~scanf("%d",&n)) { init(); for(int i=1; i

转载地址:http://zmjyz.baihongyu.com/

你可能感兴趣的文章
Netty入门使用
查看>>
Netty原理分析及实战(一)-同步阻塞模型(BIO)
查看>>
Netty原理分析及实战(三)-高可用服务端搭建
查看>>
Netty原理分析及实战(四)-客户端与服务端双向通信
查看>>
Netty发送JSON格式字符串数据
查看>>
Netty和Tomcat的区别已经性能对比
查看>>
Netty基础—1.网络编程基础二
查看>>
Netty基础—3.基础网络协议二
查看>>
Netty基础—7.Netty实现消息推送服务一
查看>>
Netty基础—8.Netty实现私有协议栈二
查看>>
Netty多线程 和 Redis6 多线程对比
查看>>
Netty学习总结(2)——Netty的高性能架构之道
查看>>
Netty学习总结(3)——Netty百万级推送服务
查看>>
Netty学习总结(5)——Netty之TCP粘包/拆包问题的解决之道
查看>>
Netty学习总结(6)——Netty使用注意事项
查看>>
Netty客户端断线重连实现及问题思考
查看>>
Netty工作笔记0001---Netty介绍
查看>>
Netty工作笔记0003---IO模型-BIO-Java原生IO
查看>>
Netty工作笔记0006---NIO的Buffer说明
查看>>
Netty工作笔记0007---NIO的三大核心组件关系
查看>>